Let's hope they can find and see the Higgs Boson at least this time without failure.
Here are some photos of repairs:
Combining two major ATLAS inner detector components. The semiconductor tracker is inserted into the transition radiation tracker for the ATLAS experiment at the LHC. These make up two of the three major components of the inner detector. They will work together to measure the trajectories produced in the proton-proton collisions at the centre of the detector when the LHC is switched on. Photo taken on February 22nd, 2006. (Maximilien Brice, © CERN)
Visible damage to the LHC magnets in sector 3-4 of the LHC on November 12th, 2008. On September 19th, 2008, as the LHC was being switched on, a faulty electrical connection between two of the accelerator's magnets caused a large helium leak, which violently vented 6 tons of helium into the tunnel. The resulting temperature rise damaged some 53 magnets. (Maximilien Brice, © CERN) #
The silicon strip tracker of the Compact Muon Solenoid (CMS) nears completion. Shown here are three concentric cylinders, each comprised of many silicon strip detetectors (the bronze-coloured rectangular devices, similar to the CCDs used in digital cameras). These surround the region where the protons collide. (© CERN) #
An automated magnetic tape vault at CERN computer center, seen on September 15th, 2008. The tapes are used to store the complete LHC data set, from which a fraction of the data is copied to overlying disk caches for fast and widespread access. The handling of the magnetic tape cartridges is now fully automated, as they are racked in vaults where they are moved between the storage shelves and the tape drives by robotic arms.(Claudia Marcelloni; Maximilien Brice, © CERN) #
A tunnel with part of one of the beam dumps of the LHC at point 6. Beam dumps are absorption mechanisms where the powerful beams can be extracted completely from the LHC, consisting of a 7m segmented carbon cylinder, 700mm in diameter, contained in a water-cooled steel cylinder, surrounded by about 750 tons of concrete and iron shielding. The sign at top warns of the presence of helium, argon and/or nitrogen in nearby pipes - gases that (if they leaked out) could displace oxygen and cause unconsciousness. (Maximilien Brice; Claudia Marcelloni, © CERN) #
Insertion of a Time Of Flight (TOF) module in the upper part of the spaceframe for the ALICE experiment. Charged particles in the intermediate momentum range are identified in ALICE by the TOF detector. The time measurement, in conjunction with the momentum and track length measured by the tracking detectors is used to calculate the particle mass. (Mona Schweizer, © CERN) #
Work on the ATLAS semiconductor tracker barrel. Precision work is performed on the semiconductor tracker barrel of the ATLAS experiment. The semiconductor tracker will be mounted in the barrel close to the heart of the ATLAS experiment to detect the path of particles produced in proton-proton collisions. (Maximilien Brice, © CERN) #
Installing the ATLAS calorimeter in November of 2005. The eight torodial magnets can be seen on the huge ATLAS detector with the calorimeter before it is moved into the middle of the detector. This calorimeter will measure the energies of particles produced when protons collide in the centre of the detector. (Maximilien Brice, © CERN) #
photos are very nice, as i have not seent them before. so we can discuss more here. ok then keep it up.
ReplyDeleteNice to hear from you Mr. Arvind.. you are welcome to discuss.. please do right
ReplyDelete